{VERSION 6 0 "IBM INTEL NT" "6.0" } {USTYLETAB {CSTYLE "Maple Input" -1 0 "Courier" 0 1 255 0 0 1 0 1 0 0 1 0 0 0 0 1 }{CSTYLE "2D Math" -1 2 "Times" 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 1 }{CSTYLE "2D Comment" 2 18 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 } {CSTYLE "" -1 256 "" 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }{CSTYLE "" -1 257 "" 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 }{PSTYLE "Normal" -1 0 1 {CSTYLE "" -1 -1 "" 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 }0 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }{PSTYLE "Heading 1" 0 3 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }1 0 0 0 8 4 0 0 0 0 0 0 -1 0 }{PSTYLE "" 0 256 1 {CSTYLE "" -1 -1 "" 1 18 0 0 0 0 0 1 0 0 0 0 0 0 0 1 }3 0 0 -1 -1 -1 0 0 0 0 0 0 -1 0 }} {SECT 0 {PARA 256 "" 0 "" {TEXT -1 50 "Module 23: d'Alembert's Solutio n for Wave Equation" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 " " {TEXT -1 64 "Hereafter we acknowledge that d'Alembert's solution has the form" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 22 " u(t, x) = " }{XPPEDIT 18 0 "psi(x+c*t);" "6#-%$psiG6#, &%\"xG\"\"\"*&%\"cGF(%\"tGF(F(" }{TEXT -1 3 " + " }{XPPEDIT 18 0 "phi( x-c*t);" "6#-%$phiG6#,&%\"xG\"\"\"*&%\"cGF(%\"tGF(!\"\"" }{TEXT -1 1 " ." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 120 "Not e that we have not used any information about boundary conditions to a rrive at this result. to get information about " }{XPPEDIT 18 0 "psi; " "6#%$psiG" }{TEXT -1 5 " and " }{XPPEDIT 18 0 "phi;" "6#%$phiG" } {TEXT -1 119 " we used information about the initial conditions. We r eview the situation with the assumption that u(0,x) = f(x) and " } {XPPEDIT 18 0 "u[t];" "6#&%\"uG6#%\"tG" }{TEXT -1 15 " (0, x) = g(x). " }}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 41 " A general solution for the w ave equation" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 99 " We use the ideas of the previous module to construct a gen eral solution for the wave equation." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 23 "f:='f': g:='g': u:='u':" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 87 "u:=(f,g,t,x,c)->(f(x+c*t)+f(x-c*t))/2\n +int(g(s),s=x -c*t..x+c*t)/(2*c);" }}}{PARA 0 "" 0 "" {TEXT -1 91 " To illustrat e this general solution, we take a particular example. We will take c \+ = 1." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "f:=x->4*cos(4*x);\ng :=x->x^2-1/3;" }}}{PARA 0 "" 0 "" {TEXT -1 52 " Here is an evaluat ion of this general solution." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 13 "u(f,g,t,x,1);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 50 "with (plots):\nanimate(u(f,g,t,x,1),x=-2..2,t=0..2);" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 21 "Half Infinite Strings" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 137 "This solution is for all number x. It is as though we had a string that was infinite in both d irectons. That is, this solution holds for " }{XPPEDIT 18 0 "-infinity < x;" "6#2,$%)infinityG!\"\"%\"xG" }{TEXT -1 5 " and " }{XPPEDIT 18 0 "x < infinity;" "6#2%\"xG%)infinityG" }{TEXT -1 1 "." }}{PARA 0 "" 0 "" {TEXT -1 80 " Our next idea is to suppose that we solve the e quation on the interval [0, " }{XPPEDIT 18 0 "infinity;" "6#%)infinity G" }{TEXT -1 144 " ). We begin by imposing only one boundary condition . We suppose that x > 0. With this assumption, we have a boundary cond ition at the left end." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 32 "Boundary Condition: u(t, 0) = 0." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 39 "Initial Conditions: u(0, \+ x) = f(x) and " }{XPPEDIT 18 0 "u[t];" "6#&%\"uG6#%\"tG" }{TEXT -1 24 "(0, x) = g(x) for x > 0." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 " " 0 "" {TEXT -1 79 " With no initial conditions or boundary condit ions, we have concluded that " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }} {PARA 0 "" 0 "" {TEXT -1 32 " u(t, x) = " } {XPPEDIT 18 0 "psi(x+c*t);" "6#-%$psiG6#,&%\"xG\"\"\"*&%\"cGF(%\"tGF(F (" }{TEXT -1 3 " + " }{XPPEDIT 18 0 "phi(x-c*t);" "6#-%$phiG6#,&%\"xG \"\"\"*&%\"cGF(%\"tGF(!\"\"" }{TEXT -1 1 " " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 52 "as t increases. With initial co nditions, we got that" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 31 " u(t, x) = " }{XPPEDIT 18 0 "(f(x+ c*t)+f(x-c*t))/2;" "6#*&,&-%\"fG6#,&%\"xG\"\"\"*&%\"cGF*%\"tGF*F*F*-F& 6#,&F)F**&F,F*F-F*!\"\"F*F*\"\"#F2" }{TEXT -1 3 " + " }{XPPEDIT 18 0 " (G(x+c*t)-G(x-c*t))/2;" "6#*&,&-%\"GG6#,&%\"xG\"\"\"*&%\"cGF*%\"tGF*F* F*-F&6#,&F)F**&F,F*F-F*!\"\"F2F*\"\"#F2" }{TEXT -1 1 " " }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 34 "where G is an antide rivative of g." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 69 " Now, we are supposing only that x > 0. We must do ex tensions of " }{XPPEDIT 18 0 "psi;" "6#%$psiG" }{TEXT -1 5 " and " } {XPPEDIT 18 0 "phi;" "6#%$phiG" }{TEXT -1 77 " for as t increases for \+ c t will exceed x and we will need the definition of " }{XPPEDIT 18 0 "phi;" "6#%$phiG" }{TEXT -1 96 " for negative values. Happily, there \+ is information available through the boundary conditions. " }}{PARA 0 "" 0 "" {TEXT -1 35 " The first boundary conditon is" }}{PARA 0 " " 0 "" {TEXT -1 24 " 0 = u(t, 0) = " }{XPPEDIT 18 0 "psi;" "6 #%$psiG" }{TEXT -1 11 " ( c t ) + " }{XPPEDIT 18 0 "phi;" "6#%$phiG" } {TEXT -1 12 " (- c t ) = " }{XPPEDIT 18 0 "(f(c*t)+G(c*t)+C)/2;" "6#*& ,(-%\"fG6#*&%\"cG\"\"\"%\"tGF*F*-%\"GG6#*&F)F*F+F*F*%\"CGF*F*\"\"#!\" \"" }{TEXT -1 6 " + " }{XPPEDIT 18 0 "(f(-c*t)-G(-c*t)-C)/2;" "6#*& ,(-%\"fG6#,$*&%\"cG\"\"\"%\"tGF+!\"\"F+-%\"GG6#,$*&F*F+F,F+F-F-%\"CGF- F+\"\"#F-" }{TEXT -1 3 " ." }}{PARA 0 "" 0 "" {TEXT -1 6 " Thus," }} {PARA 0 "" 0 "" {TEXT -1 65 " 0 = f( c t ) + f( - c t ) \+ + G( c t ) - G( - c t )." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 " " 0 "" {TEXT -1 62 "Since this holds for all f and for all g, then it \+ must be that" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 77 " f( c t ) = - f( - c t ) and G( c t ) = G( - c t ) \+ for all t > 0." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 73 "Thus, f should have an odd extension and G should have an even extension." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 1 {PARA 3 " " 0 "" {TEXT -1 30 "Making even and odd extensions" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 245 "It's clear that in order to illustrate these ideas, we are going to need to be able to make ev en and odd extensions for functions. Here is a procedure. You must exe cute these two parts inorder to be able to work what the rest of this \+ work sheet." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 80 "ef:=proc(f,x) \n if x>0 then f(x);\n else f(-x);\n fi;\n end ;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 77 "of:=proc(f,x) \n \+ if x>0 then f(x);\n else -f(-x);\n fi;\n end;" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 57 "Having defined this part we proceed with the development." }}} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 46 "C omparing Infinite and Half-Infinite Problems." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 281 "It is wise to constrast \+ this \"half\" infinite string with the infinite string of the previous module. Let's do one example twice: first we let x range over all num bers and use just the original d'Alembert solution, and then we let x \+ only be positive and use the odd extension of f. " }}{PARA 0 "" 0 "" {TEXT -1 20 " Here's f and g." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "f:=x->-(Heaviside(2*Pi-x)-Heaviside(Pi-x))*sin(x);\ng :=x->0;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 19 "plot(f(x),x=0..1 0);" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 121 " Now, we solve the PDE with initial conditions and no boundary conditio ns. we use the d'Alembert solution, and take c = 1." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 28 "u:=(t,x)->(f(x+t)+f(x-t))/2;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 53 "plot3d(u(t,x),x=-10..10,t=0..5,orie ntation=[-70,25]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 46 "with( plots):\nanimate(u(t,x),x=-10..10,t=0..5);" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 81 "Next, we solve the PDE with initial conditions and boundary conditon u(t, 0) = 0." }} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 34 "u:=(t,x)->(of(f,x+t)+of(f,x-t))/2;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 56 "plot3d('u(t,x)',x=0..4*Pi,t=0..10,o rientation=[-90,10]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 74 "wi th(plots):\nanimate('u(t,x)',x=0..4*Pi,t=0..3*Pi,numpoints=75,color=RE D);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 14 "Finite Strings" }}{PARA 0 "" 0 "" {TEXT -1 204 " If we have a finite string, we have at end point at x = 0 and at x = L. We have used information at x = 0. We have not us ed the other end point. At that end point, we can get in a similar man ner that" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 71 " 0 = f( L + c t ) + f( L - c t ) + G( L + c t ) - G( L - c t )," }}{PARA 0 "" 0 "" {TEXT -1 3 "and" }}{PARA 0 "" 0 "" {TEXT -1 89 " f( L + c t ) = - f( L - c t ) and G( L + c t ) = G( L - c t ) for all t > 0." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 57 "The oddness of f and evenness of f and G changes the se to" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 " " }}{PARA 0 "" 0 "" {TEXT -1 91 " f( L + c t ) = f(- L + c t ) and G( L + c t ) = G( - L + c t ) for all t > 0." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 106 "That is, f and G ha ve period 2 L. Now we know how to make the extensions of f and of G so we can define u." }}{PARA 0 "" 0 "" {TEXT -1 116 " We work two an easy example. Then, we will do a more interesting one. Take c = 1 her e. For the first example, " }{XPPEDIT 18 0 "f(x) <> 0;" "6#0-%\"fG6#% \"xG\"\"!" }{TEXT -1 66 " and g(x) = 0. Let us choose f(x) = sin( x ) \+ on the interval [ 0, " }{XPPEDIT 18 0 "pi;" "6#%#piG" }{TEXT -1 50 " ] . This function is already odd and has period 2 " }{XPPEDIT 18 0 "PI; " "6#%#PIG" }{TEXT -1 2 " ." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 100 " We have found how to construct a general \+ solution for the wave equation on the interval [0, L]." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 35 "f:=x->sin(x); g:=x->0; L:=Pi; c:=1;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 32 "u:=(t,x)->(f(x+c*t)+f(x-c*t))/2;" } }}{PARA 0 "" 0 "" {TEXT -1 1 " " }}{PARA 0 "" 0 "" {TEXT -1 21 "Check \+ the conditions:" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "u(t,0);\n u(t,L);\nu(0,x);\nsimplify(subs(t=0,diff(u(t,x),t)));" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 59 "with(pl ots):\nanimate(u(t,x),x=0..2*Pi,t=0..2*Pi,color=RED);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 66 "plot3d(u(t,x),x=0..L,t=0..2*Pi,axes =NORMAL,orientation=[-155,65]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 52 "Even periodi c extensions and odd periodic extensions" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 295 "In order to be able to graph solu tions for the finite string, we need to be able to make a different ex tensions of functions from simply even or odd. We need to make odd and even, 2 L periodic extensions of functions of functions defined on \+ the interval [0, L]. Here is a procedure to do this." }}{PARA 0 "" 0 " " {TEXT -1 53 " First, we make an even, 2 L periodic extension." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 8 "restart:" }}}{PARA 0 "" 0 " " {TEXT -1 109 "First we make the extension on the interval [0, L] awa re that the goal is to get an even, periodic extension." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 113 "pfe:= proc(f,x)\n global L;\n \011\011if 0 <= x and x < L then f(x)\n\011\011elif L <= x and x <= 2* L then f(2*L-x)\n\011\011fi end;" }}}{PARA 0 "" 0 "" {TEXT -1 57 "Here is where we make extend the function to all numbers." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 43 "epf:= (f,x)->pfe(f,frac(abs(x)/(2*L))*2*L );" }}}{PARA 0 "" 0 "" {TEXT -1 270 "We test this setup. We define an \+ interval L and a function f and draw the graph. Be aware that we want \+ an even, 2 L extension. Look at the following to see that on the inter val [0, L], we have the graph of L, that the graph is even, and that t he function has period 2 L." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "L:=2;\nf:=x->x;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "plot ('epf(f,x)',x=-3*L..3*L);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 15 "L:='L':\nf:='f':" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }} }{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 47 " Next, w e make an odd, 2 L periodic extension." }}{PARA 0 "" 0 "" {TEXT -1 108 "First we make the extension on the interval [0, L] aware that the goal is to get an odd, periodic extension." }}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 114 "pfo:= proc(f,x)\n global L;\n\011\011if 0 <= x and x < L then f(x)\n\011\011elif L <= x and x <= 2*L then -f(2*L-x) \n\011\011fi end;" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 57 "Here is where we make extend the function to all numbers. " }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 51 "opf:= (f,x)->sign(x)*pfo (f,frac(abs(x)/(2*L))*2*L);" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 290 "As befoe, we test this setup. We define an int erval L and a function f and draw the graph. This time, be aware that \+ we want an even, 2 L extension. Look at the following to see that on t he interval [0, L], we have the graph of L, that the graph is odd, and that the function has period 2 L." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 14 "L:=2;\nf:=x->x;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "plot('opf(f,x)',x=-3*L..3*L);" }}}{EXCHG {PARA 0 "> \+ " 0 "" {MPLTEXT 1 0 0 "" }}}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 " " }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 13 "Illustrations" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }{TEXT 256 9 "Examples:" }{TEXT -1 65 " Take c = 1 and L , f, and g are specified:\n1. L = 2, f(x) = sin(" }{XPPEDIT 18 0 "pi; " "6#%#piG" }{TEXT -1 47 "x), g(x) = 0.\n2. L = 2, f(x) = 0, g(x) = \+ sin(" }{XPPEDIT 18 0 "pi" "6#%#piG" }{TEXT -1 11 "x).\n3. L =" } {XPPEDIT 18 0 "pi" "6#%#piG" }{TEXT -1 9 ", f(x) = " }{XPPEDIT 18 0 "p i" "6#%#piG" }{TEXT -1 8 "/2 - |x-" }{XPPEDIT 18 0 "pi" "6#%#piG" } {TEXT -1 188 "/2|, g(x) = 0.\n4. L = 4, f(x) = (x-1)*(Heaviside(x-1)- Heaviside(x-2)) + \n\011\011\011(3-x)*(Heaviside(x-2)-Heaviside(x-3)) \n\011\011g(x) = 0.\n5. L = 4, f(x) = 0, and g(x) = Heaviside(x-3)-He aviside(x-4)" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 98 "In order to work these example, we need to have the functions e pf and opf from the section above. " }}{PARA 0 "" 0 "" {TEXT -1 18 "He re is example 1." }}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "L:=2;\nf :=x->sin(Pi*x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "plot('op f(f,x)',x=-2*L..2*L);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "u: =(t,x)->(opf(f,x+t)+opf(f,x-t))/2;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 67 "plot3d('u(t,x)',x=0..L,t=0..2*L,axes=NORMAL,orientati on=[-135,45]);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "with(plot s):\nanimate('u(t,x)',x=0..L,t=0..L);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 18 "Here is example 2." }} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 22 "L:=2;\ng:=x->sin(Pi*x);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "int(g(x),x);\nG:=unapply(%,x );" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 29 "plot('epf(G,x)',x=-2* L..2*L);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 36 "u:=(t,x)->(epf( G,x+t)-epf(G,x-t))/2;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 67 "pl ot3d('u(t,x)',x=0..L,t=0..2*L,axes=NORMAL,orientation=[-135,45]);" }}} {EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 45 "with(plots):\nanimate('u(t,x )',x=0..L,t=0..L);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}} {PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT 257 11 "Assignme nt:" }{TEXT -1 40 " Work the remaining Illustrations above." }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{SECT 1 {PARA 3 "" 0 "" {TEXT -1 13 "Note In Proof" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 137 "Get periodic extensions of fun ctions is an interesting problem in the context of these notes. Here i s another method from the literature." }}{PARA 0 "" 0 "" {TEXT -1 0 " " }}{PARA 3 "" 0 "" {TEXT -1 44 "Generating periodic extensions of fun ctions." }}{PARA 0 "" 0 "" {TEXT -1 201 "Suppose that f is defined on \+ the interval [a,b], in MapleTech Vol. 3, NO.3, Monagan and Lopez provi ded the following method to output a function which extends the defini tion of f to the real line using" }}{PARA 0 "" 0 "" {TEXT -1 23 " \+ f(a + k (b-a) + " }{XPPEDIT 18 0 "delta" "6#%&deltaG" }{TEXT -1 10 " ) = f(a + " }{XPPEDIT 18 0 "delta" "6#%&deltaG" }{TEXT -1 1 ")" }} {PARA 0 "" 0 "" {TEXT -1 14 "for integer k." }}{EXCHG {PARA 0 "> " 0 " " {MPLTEXT 1 0 165 "PeriodicExtender:=proc(f,d::range)\nsubs( \{'F' = \+ f, 'L'=lhs(d),\n 'D'=rhs(d)-lhs(d)\},\nproc(x::algebraic) local y;\n y:=floor((x-L)/D);\n F(x-y*D);\nend)\nend;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 35 "sw:=PeriodicExtender(signum,-1..1); " }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "plot('sw(x)','x'=-4..4) ;" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 26 "g:=x->piecewise(x<0,-x ,x);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 30 "st:=PeriodicExtende r(g,-1..1);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 24 "plot('st(x)' ,'x'=-3..3);" }}}{EXCHG {PARA 0 "> " 0 "" {MPLTEXT 1 0 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}{PARA 0 "" 0 "" {TEXT -1 0 "" }}}{MARK "0 0" 0 } {VIEWOPTS 1 1 0 1 1 1803 1 1 1 1 }{PAGENUMBERS 0 1 2 33 1 1 }